
2 of 12

1) [11 points total] Hash Tables

For a) and b) below, insert the following elements in this order: 19, 48, 8, 27, 97, 7. For each
table, TableSize = 10, and you should use the primary hash function h(k) = k%10. If an item
cannot be inserted into the table, please indicate this and continue inserting the remaining values.

a) Separate chaining hash table – use a
sorted linked list for each bucket
where the values are ordered by
increasing value

0
1
2
3
4
5
6
7
8
9

b) Quadratic probing hash table

0
1
2
3
4
5
6
7
8
9

c) What is the load factor in Table a)? 0.6

d) Would you implement lazy deletion on Table a)? In 1-2 sentences describe why or why not.
Be specific.

No. Deletion is equivalent in cost to a find operation (once found, just remove the node

from the linked list). So you do not really gain much by implementing lazy deletion here –

it will merely leave nodes marked deleted in the table, causing other finds/inserts/deletes to

have to traverse over them. There could be a small advantage to leaving the node around if

it was likely to be inserted again soon, but the advantages of this is probably outweighed by

the disadvantages.

e) In 1-2 sentences (or pseudo code) describe how you would implement re-hashing on Table b).
Be specific.
Two ways you could trigger rehashing are when the load factor on the table gets to be > 0.5

or when an insertion fails. To re-hash, first create a new hash table roughly 2x as large as

this one (and a prime number). Traverse the original table from top to bottom, for every

value encountered, calculate the hash function on the key and insert it into the new table

(mod-ing by the new tablesize).

f) What is the big-O worst case runtime of an Insert in a hash table like
Table a) containing N elements? _O(N)_

g) What is the big-O worst case runtime of determining what the
maximum value is in a hash table like Table b) containing N elements? _O(N)_

17au

CSE 332 Final Exam Review Packet

3 of 12

2) [12 points total] Graphs!

a) [2 points] What is the big-O running time of Dijkstra’s algorithm (assuming an
adjacency list representation) if:

(i) A priority queue is used? O(E log V + Vlog V) or just O(E log V)

(ii) An unsorted list is used? O(EV + V2)

b) [2 points] Which implementation of Dijkstra’s (priority queue vs. unsorted list) is likely
to be faster if the graph is known to be dense? Explain your answer in ~one sentence

for any credit.

Priority Queue is better than unsorted list regardless of whether the graph is dense or

sparse. O(log V) is always better than O(V) whether E is close to V or V2 .

c) [2 points] Give a Minimum Spanning Tree (MST) of the graph below by highlighting the
edges that would be part of the MST.

d) [6 points] For (ii) and (iv) below, you are given a perfect binary tree of height h

containing n nodes. Your answer should be an exact formula, such as 3/2 log h, or 5
3n, not big-O notation.

(i) Depth First Search: What is the name of the data structure used in DFS? stack

(ii) What is the maximum size of that data structure during a DFS ?

h + 1

(iii)Breadth First Search: What is the name of the data structure used in BFS? queue

(iv) What is the maximum size of that data structure during a BFS ?

2h

A B

C

D

F

E

G

4

3
2 4

1

1

2

3
2

2 1

5

16au

4 of 12

3) [9 points total] More Graphs! Use the following graph for this problem:

a) [2 points] List a valid topological ordering of the nodes in the graph above (if there are no
valid orderings, state why not).

E C B A F D G

b) [3 points] In lecture we described an optimization to the topological sorting algorithm that
used a queue. Your partner proposes that you use a priority queue instead of a FIFO queue. What
would be the worst case running time of this new version of topological sort (assuming an
adjacency list representation of the graph is used)? For any credit, briefly describe your

answer with pseudo code or in a couple of sentences.

calculateIndegreeOfAllVertices(); // O(E + V)

buildheapOfVertices(); // O(V)

for (ctr=0; ctr < numVertices; ctr++){ // V times

v = deletemin(); // O (log V)

put v next in output // O(1)

for each w adjacent to v { // E times total

decreasekey(w, 1); // O(log V)

}

} // So we get: O(E + V + V + V log V + E log V) O(E log V)

c) [2 points] ASSUMING the edges above are undirected and unweighted, give a valid
breadth first search of this graph, starting at vertex A, using the algorithm described in lecture.

One possibility: A B D F C E G

d) [2 points] ASSUMING the edges above are undirected and unweighted, give a valid depth
first search of this graph, starting at vertex A, using the non-recursive algorithm described in

lecture.

One possibility: A B C E G F D

A B

F

D

G

C

E

2

4
1 3

2

2

1

4
1

5 2

3

17au

5 of 12

4) [10 points] Parallel “Suffix Max” (Like Prefix, but from the Right instead):

a) Given the following array as input, calculate the “suffix max” using an algorithm similar to
the parallel prefix algorithm discussed in lecture. Fill the output array with the max of the
values contained in all of the cells to the right (including the value contained in that cell) in
the input array. The first pass of the algorithm is similar to the first pass of the parallel prefix
code you have seen before. Fill in the values for max and var in the tree below. The output
array has been filled in for you. Do not use a sequential cutoff. You can assume that the

array contains only positive integers.

Index 0 1 2 3 4 5 6 7
Input 14 50 38 29 6 12 3 5
Output 50 50 38 29 12 12 5 5

b) How is the var value computed for the left and right children of a node in the tree. Give
exact code (not just an English description) where p is a reference to the current tree node.

p.left.var = Math.max(p.var, p.right.max)

p.right.var = p.var

c) How is output[i] computed? Give exact code assuming leaves[i] refers to the leaf
node in the tree visible just above the corresponding location in the input and output
arrays in the picture above.

output[i] = Math.max(leaves[i].max, leaves[i].var)

lo:0

hi:8

max:50

var:0

lo:0

hi:4

max:50

var:12

lo:4

hi:8

max:12

var:0

lo:6

hi:8

max:5

var:0

lo:4

hi:6

max:12

var:5

lo:2

hi:4

max:38

var:12

lo:0

hi:2

max:50

var:38

l:0

h:1

max:14

var:50

l:1

h:2

max:50

var:38

l:2

h:3

max:38

var:29

l:3

h:4

max:29

var:12

l:4

h:5

max:6

var:12

l:5

h:6

max:12

var:5

l:6

h:7

max:3

var:5

l:7

h:8

max:5

var:0

18wi

6 of 12

5) [14 points] In Java using the ForkJoin Framework, write code to solve the following problem:

• Input: An array of ints
• Output: the array index of the rightmost number greater than zero in the Input array.

For example, if input array is {-3, 2, 5, -2, 7, 0, -4}, the output would be 4, since that is the index
of the value 7. If there are no values greater than 0 in the array then -1 should be returned.
 Do not employ a sequential cut-off: the base case should process one element.

(You can assume the input array will contain at least one element.)
 Give a class definition, RightmostPosTask, along with any other code or classes

needed.
 Fill in the function findRightmostPos below.

You may not use any global data structures or synchronization primitives (locks).

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveTask;

import java.util.concurrent.RecursiveAction;

class Main{

public static final ForkJoinPool fjPool = new ForkJoinPool();

// Returns the index of the rightmost positive value

// in the array input. Returns -1 if no values > 0 in input.

public static int findRightmostPos (int[] input) {

 return fjPool.invoke(

new RightmostPosTask(input, 0, input.length));

}

}

Please fill in the function above and write your class on the next page.

17au

7 of 12

5) (Continued) Write your class on this page.

public class RightmostPosTask extends RecursiveTask<Integer> {

 int[] array;

 int lo;

 int hi;

 public RightmostPosTask(int[] array, int lo, int hi) {

this.lo = lo;

this.hi = hi;

this.array = array;

 }

 protected Integer compute() {

if (hi – lo < 2) {

if (array[lo] > 0) {

return lo;

} else {

return -1;

}

} else {

int mid = lo + (hi - lo) / 2;

RightmostPosTask left = new RightmostPosTask (array,

lo, mid);

RightmostPosTask right = new RightmostPosTask (array,

mid, hi);

left.fork();

int rightResult = right.compute();

int leftResult = left.join();

if (rightResult > leftResult) {

return rightResult;

} else {

return leftResult;

}

}

 }

}

17au

8 of 12

6) [13 points] Concurrency: The following class implements a Bank account class that keeps
track of multiple Bank Accounts a user might have. Multiple threads could be accessing the same
BankAccounts object.

public class BankAccounts {

private Map<String, Double> acctsMap = new HashMap<>();

ReentrantLock lock = new ReentrantLock();

// Returns null if account does not exist

public Double getBalance(String acctName) {

lock.acquire();

return acctsMap.get(acctName);

Double balance = acctsMap.get(acctName);

lock.release();

return balance;

}

public Double withdraw(String acctName, Double amount) {

lock.acquire();

Double acctBalance = getBalance(acctName);

if (acctBalance == null || acctBalance < amount) {

lock.release();

throw new InvalidTransactionException();

}

acctsMap.put(acctName, acctBalance – amount);

lock.release();

return amount;

}

// Deposit amount in acctName

// Creates acctName if it does not already exist

public void deposit(String acctName, Double amount) {

lock.acquire();

Double acctBalance = getBalance(acctName);

if (acctBalance == null) {

acctBalance = 0.0;

}

acctsMap.put(acctName, acctBalance + amount);

lock.release();

}

}

18wi

9 of 12

6) (Continued)
a) Does the BankAccounts class above have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

If there are any problems, describe them in 1-2 sentences.

There is a data race on the acctsMap, e.g. one thread could be reading it in getBalance

while another thread could be writing it in withdraw or deposit. Similarly multiple

threads could be writing it at the same time by calling withdraw or deposit

simultaneously. A data race is a race condition.

b) Suppose we made the withdraw method synchronized, and changed nothing else in the
code. Does this modified BankAccounts class above have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

If there are any FIXED problems, describe why they are FIXED in 1-2 sentences. If there are any
NEW problems, describe them in 1-2 sentences.

You can no longer have a race condition between two simultaneous calls to withdraw.

c) Modify the code on the previous page to use locks to avoid any of the potential problems
listed above. Create locks as needed. Use any reasonable names for the locking methods you
use. DO NOT use synchronized. You should create re-entrant lock objects as needed as
follows (place this in your code as needed):

ReentrantLock lock = new ReentrantLock();

d) Clearly circle all of the critical sections in your code on the previous page.

18wi

10 of 12

7) [16 points] Sorting

a) [2 points] Give the recurrence for SEQUENTIAL Mergesort – worst case: (Note: We
are NOT asking for the closed form.)

b) [3 points] Give the recurrence for Quicksort (parallel sort & parallel partition) – worst
case span: (Note: We are NOT asking for the closed form.)

c) [5 points] Give the big-O runtimes requested below.

__________ A) Quicksort (parallel sort & parallel partition) – best case span

__________ B) Heapsort – worst case

__________ C) Insertion Sort – worst case

__________ D) Bucket Sort – best case

__________ E) Mergesort (sequential) – worst case

d) [1 point] Is the version of Quicksort described in lecture a stable sort?

YES NO

e) [2 points] In 1-2 sentences, describe what it means for a sort to be stable?

In case of ties during the sort, the original ordering of values is preserved.

f) [3 points] Radix Sort: Give a formula for the worst case big-O running time of radix
sort. For full credit, your formula should include all of these variables:

n – the number of values to be sorted
max_value – the values to be sorted range from 0 to max_value
radix – the radix or base to be used in the sort

Answer:

18wi

11 of 12

8) [9 points] P, NP, NP-Complete

a) [2 points] “NP” stands for ____ Nondeterministic Polynomial ______________________

b) [2 points] What does it mean for a problem to be in NP?

Given a candidate solution, we can verify whether the solution is correct in polynomial

time.

c) [5 points] For the following problems, circle ALL the sets they (most likely) belong to:

Finding the shortest path from one
vertex to another vertex in a
weighted directed graph NP P NP-complete None of these

Finding a cycle that visits
each edge in a graph
exactly once NP P NP-complete None of these

Determining if a program
will run forever NP P NP-complete None of these

Finding the prefix sum of an
array in parallel using
10 processors NP P NP-complete None of these

Finding a path that starts and
ends at the same vertex that
visits every vertex exactly
once NP P NP-complete None of these

18wi

